The Chemical Imprint of Silicate Dust on the Most Metal-poor Stars

نویسندگان

  • Anna Frebel
  • Volker Bromm
  • Alexander P. Ji
چکیده

We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1M ) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H]crit). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H]crit = −4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H]crit = −5.3±0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < −4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The production of dust in the Magellanic Clouds

The sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope has enabled detailed surveys of mass-losing stars in the Large and Small Magellanic Clouds. Comparisons of samples from these galaxies and the Milky Way reveal how the dust produced by evolved stars depends on the metallicity of the host environment. Oxygen-rich stars show several trends with metallicity. In more metal-...

متن کامل

Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral, turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (> 100Å) under these conditions. This can have i...

متن کامل

The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation

We investigate the radiative transport of dust in primordial galaxies in the presence of the UV radiation field from the first metal-free stars. We find that dust created in the first supernova (SN) explosions can be driven through the interior of the SN remnant to accumulate in the SN shells, where second-generation stars may form from compressed cooling gas. This scenario requires metal-free ...

متن کامل

On the Crystallinity of Silicate Dust in the Interstellar Medium

An accurate knowledge of the mineralogy (chemical composition and crystal structure) of the silicate dust in the interstellar medium (ISM) is crucial for understanding its origin in evolved stars, the physical and chemical processing in the ISM, and its subsequent incorporation into protostellar nebulae, protoplanetary disks and cometary nuclei where it is subjected to further processing. While...

متن کامل

Mid-infrared Spectra of Late-type Stars: Long-term Evolution

Recent ground-based mid-infrared spectra of 29 late-type stars, most with substantial dust shells, are compared to ground-based spectra of these stars from the 1960s and 1970s and to IRAS-LRS spectra obtained in 1983. The spectra of about half the stars show no detectable changes, implying that their distributions of circumstellar material and associated dust grain properties have changed littl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014